Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
1.
BMC Infect Dis ; 24(1): 379, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38584271

RESUMEN

BACKGROUND: A major worldwide health issue is the rising frequency of resistance of bacteria.Drug combinations are a winning strategy in fighting resistant bacteria and might help in protecting the existing drugs.Monolaurin is natural compound extracted from coconut oil and has a promising antimicrobial activity against Staphylococcus.aureus. This study aims to examine the efficacy of monolaurin both individually and in combination with ß-lactam antibiotics against Staphylococcus aureus isolates. METHODS: Agar dilution method was used for determination of minimum inhibitory concentration (MIC) of monolaurin against S.aureus isolates. Scanning electron microscope (SEM) was used to detect morphological changes in S.aureus after treatment with monolaurin. Conventional and Real-time Polymerase chain reaction (RT-PCR) were performed to detect of beta-lactamase (blaZ) gene and its expressional levels after monolaurin treatment. Combination therapy of monolaurin and antibiotics was assessed through fractional inhibitory concentration and time-kill method. RESULTS: The antibacterial activity of monolaurin was assessed on 115 S.aureus isolates, the MIC of monolaurin were 250 to 2000 µg/ml. SEM showed cell elongation and swelling in the outer membrane of S.aureus in the prescence of 1xMIC of monolaurin. blaZ gene was found in 73.9% of S.aureus isolates. RT-PCR shows a significant decrease in of blaZ gene expression at 250 and 500 µg/ml of monolaurin. Synergistic effects were detected through FIC method and time killing curve. Combination therapy established a significant reduction on the MIC value. The collective findings from the antibiotic combinations with monolaurin indicated synergism rates ranging from 83.3% to 100%.In time-kill studies, combination of monolaurin and ß-lactam antibiotics produced a synergistic effect. CONCLUSION: This study showed that monolaurin may be a natural antibacterial agent against S. aureus, and may be an outstanding modulator of ß-lactam drugs. The concurrent application of monolaurin and ß-lactam antibiotics, exhibiting synergistic effects against S. aureus in vitro, holds promise as potential candidates for the development of combination therapies that target particularly, patients with bacterial infections that are nearly incurable.


Asunto(s)
Lauratos , Staphylococcus aureus Resistente a Meticilina , Monoglicéridos , Infecciones Estafilocócicas , Humanos , Staphylococcus aureus , 60693 , Glicerol/farmacología , Sinergismo Farmacológico , Antibacterianos/farmacología , Monobactamas/farmacología , Pruebas de Sensibilidad Microbiana
2.
Cureus ; 16(3): e56473, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38638779

RESUMEN

The COVID-19 pandemic, caused by the SARS-CoV-2 virus, has profoundly affected global health and well-being. As part of the Coronaviridae family, SARS-CoV-2 joins a diverse group of viruses found in both humans and various animal species, including bats, camels, and cats. The pandemic has led to widespread social isolation, reduced physical activity, and significant lifestyle changes, posing potential risks to individuals' mental and emotional health. This review aims to explore the implications of COVID-19 on the mental health of children and adolescents, given the limited attention this population has received in the medical literature. Multiple research studies in several countries have found that the COVID-19 pandemic is associated with greater stress levels, depression, anxiety, insomnia, drug misuse, and other mental health challenges among young individuals. Understanding the long-term effects of the pandemic on mental health is crucial for developing effective interventions and support systems to promote resilience and well-being in children and adolescents. Even after the pandemic ends, it is crucial to prioritize understanding the long-term impacts of the pandemic on mental health, integrating findings into public health strategies, addressing mental healthcare disparities, and fostering resilience in children and adolescents. Achieving these objectives requires collaborative efforts across various sectors to ensure equitable access to mental health resources and the implementation of sustainable solutions for the well-being of young people in the aftermath of the pandemic.

3.
Environ Monit Assess ; 195(11): 1357, 2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-37870616

RESUMEN

Heavy metals are considered the most common pollutants in industrial wastewater areas. Out of thirty bacterial isolates, only 3 isolates sighted the highest metal resistance activity for Zn+2, Fe+2, Pb+2, Co+2, Mn+2, Ni+2, and Cd+2. The biochemical and DNA homology identification with similarities 99.58%, 99.79%, and 99.86% of those isolates was identified and deposited in WDCM, respectively, as Enterobacter kobei OM144907 SCUF0000311, Enterobacter cloacae OM180597 SCUF0000312, and Enterobacter hormaechei OM181067 SCUF0000313. The minimum tolerance activity (MIC) of heavy metal concentrations against E. kobei and E. cloacae was 25, 15, and 15 mmol/l for Ni+2, Fe+2, and Mn+2, respectively, and 10 mmol/l for Zn+2, Pb+2, Co+2, and Cd+2, while against E. hormaechei, it is 15 mmol/l for Ni+2, Fe+2, and Mn+2 and 10 mmol/l for Zn+2, Pb+2, Co+2, and Cd+2. The consortium and solitary application of bacterial isolates towards heavy metal removal at 100%, 200%, and 300% industrial wastewater concentrations were conducted and showed that more than 90% removal of Zn+2, Fe+2, Pb+2, Mn+2, Ni+2, and Cd+2 from a non-concentrated polluted sample (100%) was reported by the three strains. With doubling the polluted sample concentration (200%), the highest removal efficiency for Zn+2, Pb+2, Mn+2, Ni+2, and Cd+2 was reported by E. cloacae as 70. 75, 66, 65, and 57%, respectively. Removal efficiency after increasing the polluted sample concentration to 300% showed that E. cloacae removed above 45% of all tested heavy metals except Pb+2. Ultimately, E. cloacae exposed the highest efficiency with recommendations for heavy metals removal under higher concentrations.


Asunto(s)
Metales Pesados , Aguas Residuales , Biodegradación Ambiental , Cadmio , Plomo , Monitoreo del Ambiente , Metales Pesados/análisis , Enterobacter , Residuos Industriales
4.
Tissue Cell ; 85: 102234, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37844391

RESUMEN

Acute pancreatitis (AP) is an inflammatory disorder of acinar cells. It may develop into severe chronic pancreatitis with a significant mortality rate. The current study aimed to assess the therapeutic effect of a Lactobacillus (LAB) mixture against rat AP. Six groups were created including control, taurine (300 mg/kg; i.p.) for 7 days, LAB mixture for 7 days, L-arginine (2.5 g/kg; i.p.) 2 doses with 1 h interval on 1st day, L-arginine+taurine, and L-arginine+LAB. Serum amylase and lipase activities were measured. Pancreatic tissue was used for histopathological examination, oxidative stress biomarkers including malondialdehyde (MDA) and reduced glutathione (GSH), and inflammatory biomarkers including myeloperoxidase (MPO) and interleukin (IL)-33 assessment. qRT-PCR was used for transient receptor potential vanilloid-1 (TRPV-1) investigation and Western blot analysis for measuring nuclear factor kappa-B (NF-κBp65) and the apoptosis biomarker; caspase-3. Taurine and LAB reduced lipase and significantly ameliorated induced oxidative stress by normalizing MDA and GSH contents. They counteracted inflammation by reducing MPO, IL-33, NF-κBp65, and TRPV-1. In addition, taurine and LAB counteracted apoptosis as proved by reduced caspase-3 expression. Taken together, these findings indicate that taurine and the use LAB mixture can mitigate AP by L-arginine via influencing TRPV-1/IL-33/NF-κB signaling together with exhibiting potent antioxidant and anti-inflammatory effects.


Asunto(s)
Antineoplásicos , Pancreatitis , Animales , Ratas , Enfermedad Aguda , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Apoptosis , Arginina/efectos adversos , Biomarcadores/metabolismo , Caspasa 3/metabolismo , Interleucina-33/inmunología , Interleucina-33/metabolismo , Lipasa/metabolismo , FN-kappa B/metabolismo , Páncreas/metabolismo , Pancreatitis/inducido químicamente , Pancreatitis/tratamiento farmacológico , Pancreatitis/patología
5.
Pharm Dev Technol ; 28(9): 803-810, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37664988

RESUMEN

Fungal skin diseases are recognized as a global burden disease that affect human quality adjusted life. Terbinafine belongs to allylamine and broad-spectrum antifungal drugs but considered practically insoluble. Different lipids/surfactant with two different molar ratios were investigated with Span 40-based niosomes; characterized for size, morphology, loading capacity (EE%), in vitro release, kinetics, and antifungal activities. Vesicle sizes (0.19-1.23 µm), EE% (25-99%), zeta potential (> -32 mV), and in vitro release rates were dependent on both lipid types and ratios. Higher ratios of Poloxamer 407 preferably formed mixed micelles rather than forming noisome bilayers. Both Compritol and Precirol were deemed to be potential alternatives to cholesterol as bilayer membrane stabilizers. Terbinafine-loaded Compritol and Precirol stabilized niosomes were successfully prepared and demonstrated superior antifungal activities in vitro (inhibition zones) using Candida albicans ATCC 60913.


Asunto(s)
Antifúngicos , Liposomas , Humanos , Antifúngicos/farmacología , Terbinafina/farmacología , Poloxámero , Tensoactivos , Tamaño de la Partícula
6.
Chemosphere ; 339: 139693, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37536541

RESUMEN

Treating and reusing wastewater has become an essential aspect of water management worldwide. However, the increase in emerging pollutants such as polycyclic aromatic hydrocarbons (PAHs), which are presented in wastewater from various sources like industry, roads, and household waste, makes their removal difficult due to their low concentration, stability, and ability to combine with other organic substances. Therefore, treating a low load of wastewater is an attractive option. The study aimed to address membrane fouling in the submerged membrane bioreactor (SMBR) used for wastewater treatment. An aluminum electrocoagulation (EC) device was combined with SMBR as a pre-treatment to reduce fouling. The EC-SMBR process was compared with a conventional SMBR without EC, fed with real grey water. To prevent impeding biological growth, low voltage gradients were utilized in the EC deviceThe comparison was conducted over 60 days with constant transmembrane pressure and infinite solid retention time (SRT). In phase I, when the EC device was operated at a low voltage gradient (0.64 V/cm), no significant improvement in the pollutants removal was observed in terms of color, turbidity, and chemical oxygen demand (COD). Nevertheless, during phase II, a voltage gradient of 1.26 V/cm achieved up to 100%, 99.7%, 92%, 94.1%, and 96.5% removals in the EC-SMBR process in comparison with 95.1%, 95.4%, 85%, 91.7% and 74.2% removals in the SMBR process for turbidity, color, COD, ammonia nitrogen (NH3-N), total phosphorus (TP), respectively. SMBR showed better anionic surfactant (AS) removal than EC-SMBR. A voltage gradient of 0.64 V/cm in the EC unit significantly reduced fouling by 23.7%, while 1.26 V/cm showed inconsistent results. Accumulation of Al ions negatively affected membrane performance. Low voltage gradients in EC can control SMBR fouling if Al concentration is controlled. Future research should investigate EC-SMBR with constant membrane flux for large-scale applications, considering energy consumption and operating costs.


Asunto(s)
Contaminantes Ambientales , Purificación del Agua , Aguas Residuales , Eliminación de Residuos Líquidos/métodos , Membranas Artificiales , Electrocoagulación , Reactores Biológicos , Purificación del Agua/métodos , Agua/química
7.
Heliyon ; 9(6): e16253, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37292348

RESUMEN

Objective: This study aimed to isolate and investigate a bacterium from an Egyptian adult's healthy oral cavity, focusing on its probiotic properties, especially its antagonistic activity against oral pathogens. Methods: The isolated bacterium NT04 using 16S rRNA gene sequencing, was identified as Enterococcus faecium. In this study, the whole genome of Enterococcus faecium NT04 was sequenced and annotated by bioinformatics analysis tools. Results: Numerous genes encoding the production of diverse metabolic and probiotic properties, such as bacteriocin-like inhibitory substances (Enterocin A and B), cofactors, antioxidants, and vitamins, were confirmed by genomic analysis. There were no pathogenicity islands or plasmid insertions found. This strain is virulent for host colonization rather than invasion. Conclusion: Genomic characteristics of strain NT04 support its potentiality as an anti-oral pathogen probiotic candidate.

8.
Lett Appl Microbiol ; 76(7)2023 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-37336598

RESUMEN

Mimusops laurifolia is a native species restricted to the Red Sea mountains and Gulf of Aden. Its leaves contain saponins with wide range of biological activities. The presented research aimed to prepare saponins-rich extract from n-butanol fraction of M. laurifolia leaves and screen it for promising antimicrobial activities. Minimum inhibitory concentration (MIC) of the prepared saponins against Candida albicans, and their potential anti-pathogenic and antivirulence effects were determined. Different concentrations of the saponins-rich extract were investigated for their antimicrobial potential, particularly against C. albicans, using the agar well diffusion method. To assess the potential antivirulence and antipathogenic effects, we carried out molecular docking of the bioactive saponins against four key enzymes in C. albicans, which are involved in virulence and/or pathogenicity. Different concentrations of the investigated mixture showed notable antifungal activity against C. albicans with an MIC value of 6.4 µg ml-1. Docking analysis of the investigated saponins showed their affinity toward the docked enzymes, particularly saponin 1 with secreted aspartic proteinase 3 and saponin 6 with secreted aspartic proteinase 5. Thereafter, the stability of these two protein-ligand interactions was investigated using molecular dynamics (MD) simulation. The molecular interactions between saponins and the enzymes' active sites were analyzed and discussed.


Asunto(s)
Antiinfecciosos , Mimusops , Saponinas , Saponinas/farmacología , Simulación del Acoplamiento Molecular , Antifúngicos/farmacología , Antiinfecciosos/farmacología , Candida albicans , Hojas de la Planta/química , Pruebas de Sensibilidad Microbiana , Extractos Vegetales/farmacología , Extractos Vegetales/química
9.
Healthcare (Basel) ; 11(6)2023 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-36981495

RESUMEN

Using face masks appropriately is important for preventing the community spread of respiratory infections. A cross-sectional study was conducted to evaluate the knowledge level and experience of using face masks between healthcare teams to protect them and limit the spread of COVID-19 infection. A structured questionnaire was distributed to 228 healthcare members in July-December 2021. It was divided into two sections and consisted of 29 questions for a total possible score of 0 to 29. The first section was related to perceptions and knowledge about face masks (13 items); the second was related to the experience of using face masks (16 items). The average score of this questionnaire was 23.21/29 with respect to the knowledge about face masks and their proper use techniques. The healthcare team studied had satisfactory knowledge about face mask use techniques, and the study shed light on their unsatisfactory practices. Following instructions is very vital to protecting the person wearing the mask and preventing the spread of infection during health care by blocking droplets produced by speaking or coughing. Providing the healthcare teams with knowledge and experience about how to use face masks during the pandemic is critical to increase their awareness and practice in using face masks and prevent the infection from spreading.

10.
BMC Microbiol ; 23(1): 53, 2023 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-36864380

RESUMEN

BACKGROUND: Irinotecan is a chemotherapeutic agent used to treat a variety of tumors, including colorectal cancer (CRC). In the intestine, it is transformed into SN-38 by gut microbial enzymes, which is responsible for its toxicity during excretion. OBJECTIVE: Our study highlights the impact of Irinotecan on gut microbiota composition and the role of probiotics in limiting Irinotecan-associated diarrhea and suppressing gut bacterial ß-glucuronidase enzymes. MATERIAL AND METHODS: To investigate the effect of Irinotecan on the gut microbiota composition, we applied 16S rRNA gene sequencing in three groups of stool samples from healthy individuals, colon cancer, and Irinotecan treated patients (n = 5/group). Furthermore, three Lactobacillus spp.; Lactiplantibacillus plantarum (L. plantarum), Lactobacillus acidophilus (L. acidophilus), Lacticaseibacillus rhamnosus (L. rhamnosus) were used in a single and mixed form to in-vitro explore the effect of probiotics on the expression of ß-glucuronidase gene from E. coli. Also, probiotics were introduced in single and mixed forms in groups of mice before the administration of Irinotecan, and their protective effects were explored by assessing the level of reactive oxidative species (ROS) as well as studying the concomitant intestinal inflammation and apoptosis. RESULTS: The gut microbiota was disturbed in individuals with colon cancer and after Irinotecan treatment. In the healthy group, Firmicutes were more abundant than Bacteriodetes, which was the opposite in the case of colon-cancer or Irinotecan treated groups. Actinobacteria and Verrucomicrobia were markedly present within the healthy group, while Cyanobacteria were noted in colon-cancer and the Irinotecan-treated groups. Enterobacteriaceae and genus Dialister were more abundant in the colon-cancer group than in other groups. The abundance of Veillonella, Clostridium, Butryicicoccus, and Prevotella were increased in Irinotecan-treated groups compared to other groups. Using Lactobacillus spp. mixture in mice models significantly relieved Irinotecan-induced diarrhea through the reduction of both ß-glucuronidase expression and ROS, in addition to guarding gut epithelium against microbial dysbiosis and proliferative crypt injury. CONCLUSIONS: Irinotecan-based chemotherapy altered intestinal microbiota. The gut microbiota participates greatly in determining both the efficacy and toxicity of chemotherapies, of which the toxicity of Irinotecan is caused by the bacterial ß-glucuronidase enzymes. The gut microbiota can now be aimed and modulated to promote efficacy and decrease the toxicity of chemotherapeutics. The used probiotic regimen in this study lowered mucositis, oxidative stress, cellular inflammation, and apoptotic cascade induction of Irinotecan.


Asunto(s)
Neoplasias del Colon , Microbioma Gastrointestinal , Animales , Ratones , Irinotecán/efectos adversos , Escherichia coli , ARN Ribosómico 16S/genética , Especies Reactivas de Oxígeno , Glucuronidasa/genética , Diarrea/inducido químicamente , Diarrea/prevención & control
11.
J Photochem Photobiol B ; 240: 112665, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36736031

RESUMEN

Worldwide, the most frequently diagnosed cancer is female breast cancer, and it poses a serious global health threat. Traditional cancer therapies are associated with various side effects, so developing better therapies for breast cancer is necessary, such as laser therapy which could be a promising treatment option. The aim of the current study was to investigate the femtosecond laser irradiation effect on breast cancer using T47D cell line as an in vitro model. Cells were seeded at a density of 5 × 104 cells/well in 96-well plates and incubated overnight. After that, the cells were exposed to femtosecond laser irradiation at various wavelengths falling in the UV, visible, and IR ranges for 3, 5, or 10 min and at a constant power of 100 mW. Cell viability was measured directly and 24 h after femtosecond laser irradiation using MTT assay. When using different femtosecond laser irradiation parameters, especially the 380 and 400 nm femtosecond laser irradiation, there was significant inhibition of breast cancer cell growth, either directly or 24 h after femtosecond laser exposure. Also, 420 and 440 nm significantly affected the viability of the cells. It was also observed that increasing exposure time enhances the observed effect, so 10 min exposure time was the best time of exposure. However, 700, 720, 750, and 780 nm did not significantly affect the cells viability with different exposure times. It was possible to conclude from the aforementioned results that femtosecond laser irradiation exerted a significant anticancer effect against T47D cells. Consequently, the femtosecond laser could be used successfully for breast cancer management.


Asunto(s)
Neoplasias de la Mama , Terapia por Láser , Terapia por Luz de Baja Intensidad , Femenino , Humanos , Neoplasias de la Mama/radioterapia , Rayos Láser , Proliferación Celular/efectos de la radiación
12.
ACS Omega ; 7(48): 43813-43819, 2022 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-36506167

RESUMEN

We report on the simple, single-step, and cost-effective fabrication, characterization, and performance evaluation of cobalt ferrite (CoFe2O4; CFO) nanocrystalline (NC) thin films on a flexible mica substrate. The chemical solution-based drop-casting method employed to fabricate crystalline CFO films and their characterization was performed by studying the phase formation, surface morphology, and magnetic parameters, while sensor applicability was evaluated using combined magnetic and magnetostrictive properties. X-ray diffraction (XRD) indicates the single-phase and nanocrystalline nature of CFO films, where the crystallite size is ∼60 nm. The optimum conditions employed resulted in CFO NC films with surface particles exhibiting a spherical shape morphology with a homogeneous size distribution, as revealed by scanning electron microscopy analyses. Raman spectroscopic characterization of the chemical bonding indicates all of the active bands that are characteristic of the ferrite phase confirm the spinel structure, which is in agreement with XRD studies. The saturation magnetization (M S) and coercivity (H C), which are extracted from the field-dependent magnetization data, of CFO NC films were found to be 15.8 emu/g and 1.6 kOe, respectively, while the first-order magnetocrystalline anisotropy constant K 1 was ∼1.07 × 106 erg/cm3. The magnetostriction strain curve indicates that the CFO NC films exhibit a strain value of ∼86 ppm at an applied magnetic field of 8 kOe, indicating their suitability for flexible sensor devices.

13.
J Pers Med ; 12(11)2022 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-36579556

RESUMEN

Patients with neurological comorbidities are more likely to develop severe COVID-19. We aimed to detect the outcomes of COVID-19 patients with spontaneous intracerebral hemorrhage comorbidity and the role of enoxaparin in decreasing the mortality rate in these cases, even though enoxaparin is a potential cause of intracerebral hemorrhage. The patients were checked on to detect surveillance outcomes, the relationship between mortality and patient characteristics, and the relationship between enoxaparin and study outcomes. Chest condition and GCS improved in 67.9% of participants. Hematoma course increased in 49.1%. Midline-shift, brain-edema, and COVID symptoms improved in 67.9%. There was a non-significant difference in mortality regarding age and gender. There was a significant difference in mortality regarding treatment with enoxaparin; 75% of the patients who did not receive enoxaparin died. 92.6% of the patients who showed decreases in hematoma course were administered enoxaparin. 76.9% of the patients who showed increases in hematoma-course were administered enoxaparin. Most of the patients who were admitted to the neurosurgical unit with spontaneous intracerebral hemorrhage acquired the COVID-19 infection. Most of the cases included in this study did not progress to severe cases. The dying patients showed deterioration in both neurological and COVID-19 symptoms. The anticoagulant properties of enoxaparin given earlier before and throughout the infection can considerably reduce mortality in COVID-19 individuals with spontaneous intracerebral hemorrhage. It is recommended to use enoxaparin for cases with spontaneous intracerebral hemorrhage and COVID-19 regardless of hematoma size because the rate of improvement was greater than the mortality rate after using enoxaparin in this study.

14.
Nanomaterials (Basel) ; 12(21)2022 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-36364531

RESUMEN

We studied the antimicrobial effect of gold quantum dots (AuQDs), femtosecond laser irradiation, and the combined effect of laser irradiation and AuQD treatment against common infectious eye pathogens. The INSPIRE HF100 laser system (Spectra Physics) provided a femtosecond laser, which was pumped by a mode-locked femtosecond Ti: sapphire laser MAI TAI HP (Spectra Physics), while a Quanta-Ray nanosecond Nd: YAG laser (Spectra-Physics) was used to precisely synthesize 7.8, 8.7, and 11.6 nm spherical AuQDs. Then, the in vitro growth kinetics and growth rate analysis of E. coli, methicillin-resistant Staphylococcus aureus, Enterococcus faecalis, Listeria monocytogenes, and Candida albicans (treated with the AuQDs, femtosecond laser irradiation, or combined laser and AuQDs treatment) was measured. The biocompatibility of the AuQDs with the retinal epithelial cell lines (ARPE-19) and their toxicity to the cells was assayed. The results showed that (1) in vitro irradiation using a 159 J/cm2 energy density obtained from the 400 nm femtosecond laser suppressed the growth of each of the five pathogens. (2) Similarly, treatment with the AuQDs was antimicrobial against the four bacteria. The AuQDs with an average size of 7.8 nm were more highly antimicrobial and biocompatible and were less cytotoxic than the larger AuQD sizes. (3) The combined femtosecond laser irradiation and AuQD treatment was more highly antimicrobial than each treatment alone. (4) The AuQD treatment did not impair the rate of wound closure in vitro. These findings suggest that combined femtosecond laser irradiation and AuQD treatment is significantly antimicrobial against Candida albicans, Gram-positive L. monocytogenes, S. aureus, and E. faecalis, as well as Gram-negative E. coli. The nontoxicity and biocompatibility of the AuQD particles tested suggest that this form of treatment may be clinically viable.

15.
Trop Med Infect Dis ; 7(10)2022 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-36288022

RESUMEN

INTRODUCTION: The emergence of multidrug-resistant (MDR) E. coli has developed worldwide; therefore, the use of antibiotic combinations may be an effective strategy to target resistant bacteria and fight life-threatening infections. The current study was performed to evaluate the in vitro and in vivo efficacy of amikacin and imipenem alone and in combination against multidrug-resistant E. coli. Methods: The combination treatment was assessed in vitro using a checkerboard technique and time-killing curve and in vivo using a peritonitis mouse model. In resistant isolates, conventional PCR and quantitative real-time PCR techniques were used to detect the resistant genes of Metallo-ß-lactamase gene Imipenemase (bla-IMP) and aminoglycoside 6'-N-acetyltransferase (aac (6')-Ib). Scanning electron microscopy was used to detect the morphological changes in the resistant isolates after treatment with each drug alone and in combination. In vitro and in vivo studies showed a synergistic effect using the tested antibiotic combinations, showing fractional inhibitory concentration indices (FICIs) of ≤0.5. Regarding the in vivo study, combination therapy indicated a bactericidal effect after 24 h. E. coli isolates harboring the resistant genes Metallo-ß-lactamase gene Imipenemase (bla-IMP) and aminoglycoside 6'-N-acetyltransferase (aac (6')-Ib) represented 80% and 66.7%, respectively, which were mainly isolated from wound infections. The lowest effect on Metallo-ß-lactamase gene Imipenemase (bla-IMP) and aminoglycoside 6'-N-acetyltransferase (aac (6')-Ib) gene expression was shown in the presence of 0.25 × MIC of imipenem and 0.5 × MIC of amikacin. The scanning electron microscopy showed cell shrinkage and disruption in the outer membrane of E. coli in the presence of the antibiotic combination. Amikacin and imipenem combination can be expected to be effective in the treatment and control of serious infections caused by multidrug-resistant (MDR) E. coli and the reduction in bacterial resistance emergence.

16.
J Photochem Photobiol B ; 234: 112540, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35973287

RESUMEN

The unusual physical, chemical, and biological features of nanoparticles have sparked considerable attention in the ophthalmological applications. This study reports the synthesis and characterization of zinc oxide nanoparticles (ZnONPs) using laser-ablation at 100 mJ with different ablation times. The synthesized ZnONPs were spherical with an average size of 10.2 nm or 9.8 nm for laser ablation times of 20 and 30 min, respectively. The ZnONPs were screened for their antimicrobial activity against ophthalmological bacteria, methicillin-resistant S. aureus (MRSA) and Pseudomonas aeruginosa. The significant decrease in bacterial growth was observed after treatment with ZnONPs in combination with 400 nm femtosecond laser irradiation. ZnONPs were investigated for their antioxidant activity and biocompatibility towards retinal epithelial cells (ARPE-19). ZnONPs showed moderate antioxidant and free radical scavenging activity. ZnONPs prepared with an ablation time of 20 min were safer and more biocompatible than those prepared with an ablation time of 30 min, which were toxic to ARPE-19 cells with LC50 (11.3 µg/mL) and LC90 (18.3 µg/mL). In this study, laser ablation technique was used to create ZnONPs, and it was proposed that ZnONPs could have laser-activated antimicrobial activity for ophthalmological applications.


Asunto(s)
Antiinfecciosos , Terapia por Láser , Nanopartículas del Metal , Staphylococcus aureus Resistente a Meticilina , Nanopartículas , Óxido de Zinc , Antiinfecciosos/farmacología , Antioxidantes , Células Epiteliales , Rayos Láser , Nanopartículas del Metal/química , Nanopartículas del Metal/toxicidad , Nanopartículas/química , Óxido de Zinc/química
17.
J Water Health ; 20(4): 680-691, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35482384

RESUMEN

Polycyclic aromatic hydrocarbons (PAHs) pose a constant threat to the environment and public health. There are numerous activities in the Greater Cairo area that emit and release significant amounts of PAHs. Concentrations of these PAHs are released into the air and mixed with surface water, limiting its use. In this study, 17 PAH compounds are mapped at eight sites along the Nile River and its tributaries in Greater Cairo. In addition, their removal efficiency is evaluated with the conventional treatment in eight water treatment plants. PAHs were analyzed using GC-MS from January to December 2018. Naphthalene, anthracene, fluorene, pyrene, and phenanthrene were detected. The total amount of PAHs in raw water was highest in Shamal Helwan (1,325 ± 631 ng/l) and lowest in Mostorod (468 ± 329 ng/l), and the removal ranged from 25 to 31%. Further research is needed to integrate other techniques to reduce PAHs using the conventional treatment, and more efforts should be made to reduce the presence and release of PAHs in raw water.


Asunto(s)
Hidrocarburos Policíclicos Aromáticos , Contaminantes Químicos del Agua , Monitoreo del Ambiente/métodos , Hidrocarburos Policíclicos Aromáticos/análisis , Ríos , Contaminantes Químicos del Agua/análisis , Abastecimiento de Agua
18.
Environ Int ; 162: 107155, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35278800

RESUMEN

Poor ventilation and polluting cooking fuels in low-income homes cause high exposure, yet relevant global studies are limited. We assessed exposure to in-kitchen particulate matter (PM2.5 and PM10) employing similar instrumentation in 60 low-income homes across 12 cities: Dhaka (Bangladesh); Chennai (India); Nanjing (China); Medellín (Colombia); São Paulo (Brazil); Cairo (Egypt); Sulaymaniyah (Iraq); Addis Ababa (Ethiopia); Akure (Nigeria); Blantyre (Malawi); Dar-es-Salaam (Tanzania) and Nairobi (Kenya). Exposure profiles of kitchen occupants showed that fuel, kitchen volume, cooking type and ventilation were the most prominent factors affecting in-kitchen exposure. Different cuisines resulted in varying cooking durations and disproportional exposures. Occupants in Dhaka, Nanjing, Dar-es-Salaam and Nairobi spent > 40% of their cooking time frying (the highest particle emitting cooking activity) compared with âˆ¼ 68% of time spent boiling/stewing in Cairo, Sulaymaniyah and Akure. The highest average PM2.5 (PM10) concentrations were in Dhaka 185 ± 48 (220 ± 58) µg m-3 owing to small kitchen volume, extensive frying and prolonged cooking compared with the lowest in Medellín 10 ± 3 (14 ± 2) µg m-3. Dual ventilation (mechanical and natural) in Chennai, Cairo and Sulaymaniyah reduced average in-kitchen PM2.5 and PM10 by 2.3- and 1.8-times compared with natural ventilation (open doors) in Addis Ababa, Dar-es-Salam and Nairobi. Using charcoal during cooking (Addis Ababa, Blantyre and Nairobi) increased PM2.5 levels by 1.3- and 3.1-times compared with using natural gas (Nanjing, Medellin and Cairo) and LPG (Chennai, Sao Paulo and Sulaymaniyah), respectively. Smaller-volume kitchens (<15 m3; Dhaka and Nanjing) increased cooking exposure compared with their larger-volume counterparts (Medellin, Cairo and Sulaymaniyah). Potential exposure doses were highest for Asian, followed by African, Middle-eastern and South American homes. We recommend increased cooking exhaust extraction, cleaner fuels, awareness on improved cooking practices and minimising passive occupancy in kitchens to mitigate harmful cooking emissions.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire Interior , Aerosoles , Contaminantes Atmosféricos/análisis , Contaminación del Aire Interior/análisis , Bangladesh , Brasil , Ciudades , Culinaria , Monitoreo del Ambiente/métodos , Etiopía , India , Kenia , Material Particulado/análisis
19.
Vaccines (Basel) ; 10(1)2022 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-35062770

RESUMEN

BACKGROUND: Knowledge about a vaccine's side effects and efficacy is important to improving public vaccine acceptance. This study aimed to detect the safety and efficacy of vaccines among the Egyptian population. METHODOLOGY AND RESULTS: Data was collected using an online survey from participants who took two doses of the BBIBP-CorV, ChAdOx1, or BNT162 vaccines. Pain at the vaccine injection site, muscle pain, fatigue, dizziness, fever, and headache were the most common side effects after the first and second doses. The number pf side effects was higher in ChAdOx1 than in BNT162 and BBIBP-CorV. Most of the side effects started on the first day after vaccination and persisted for 1-2 days. Vaccinated people with past coronavirus infections before vaccination developed better antibodies than those who were only vaccinated. The side-effect severity was greater after the first dose of BBIBP-CorV and ChAdOx1 than after the second dose, but in contrast, the side-effect severity was greater after the second dose of BNT162 vaccine than after the first dose. ChAdOx1 was more effective than BBIBP-CorV, and one dose of ChAdOx1 produced an immune response similar to that of two doses of BBIBP-CorV. CONCLUSIONS: Coronavirus vaccines were well-tolerated, safe, and produced an immune response against the virus in most cases. Most postvaccine side effects were mild to moderate, which indicated the building of immunity by the body for protection.

20.
Mol Biol Res Commun ; 11(3): 143-153, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36718242

RESUMEN

Enterococcus species are a long-standing and non-pathogenic commensal bacterium, representing an important part of the normal. Enterococcus durans is a rarely isolated species from animals and humans, and it was a tiny constituent of human oral cavity and animal intestinal flora, as well as animal-derived foods, particularly dairy products. This study evaluated the security of our strain E. durans NT21 by using whole-genome sequencing (WGS), physicochemical features, and antimicrobial activity. The complete genomic of our strain Enterococcus durans NT21was sequenced and analyzed by using several bioinformatics tools to identify bacteriocin genes, virulence genes, antibiotic resistance genes, Crispr-Cas and pathogenicity islands. The results showed that our strain NT21 lacks the presence of virulence genes, pathogenicity islands, plasmids and has only two antibiotic resistance genes. On the other hand, it produces three bacteriocin-like inhibitory substances (Enterolysin A, P and L50a). It has six gene-encoded Crisper-Cas and one cluster Crispr-Cas gene. According to our findings, E. durans NT21 is a possible probiotic strain that is safe for both human and animal use.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...